Item Xilinx i/o Xilinx core ASIC ADC

| <u>1.5</u> |     | <u>2.5</u> |     | <u>2.5</u> |     | <b>Components</b> | ;      | 3      | Regulation |
|------------|-----|------------|-----|------------|-----|-------------------|--------|--------|------------|
| DVdd1      | Pd  | DVdd2      | Pd  | Avdd       | Pd  | Psub_total        | Itotal | Ptotal | Efficiency |
| 0.00       |     | 0.20       | 0.5 | 0.00       |     | 0.5               | 0.20   | 0.60   | 83%        |
| 0.33       | 0.5 | 0.00       |     | 0.00       |     | 0.5               | 0.33   | 1.00   | 50%        |
|            |     | 0.00       |     | 0.08       | 0.2 | 0.2               | 0.08   | 0.24   | 83%        |
| 0.00       |     | 0.00       |     | 0.20       | 0.5 | 0.5               | 0.20   | 0.60   | 83%        |
|            |     |            |     |            |     | 1.7               | 0.81   | 2.44   | 70%        |
|            |     |            |     |            |     | Watts             | Amps   | Watts  |            |

| Wire guage | Ohms/meter |
|------------|------------|
| 26         | 0.134      |
| 24         | 0.0842     |
| 22         | 0.053      |
| 20         | 0.0333     |
| 18         | 0.0209     |
| 16         | 0.0132     |
| 14         | 0.00829    |
| 12         | 0.00521    |
| 10         | 0.00328    |
| 8          | 0.00206    |
| 6          | 0.0013     |
| 4          | 0.000815   |
| 2          | 0.000515   |
| 0          | 0.000322   |

|                          |          |            |            | Each           | Each side |                | <u>otal</u> |
|--------------------------|----------|------------|------------|----------------|-----------|----------------|-------------|
| Total FEB current        | Distance | Wire gauge | Ohms/meter | $\Delta {f V}$ | Cable Pd  | $\Delta {f V}$ | Cable Pd    |
| 1.00                     | 4        | 26         | 0.134      | 0.536          | 0.536     | 1.072          | 1.072       |
|                          |          | 24         | 0.0842     | 0.337          | 0.337     | 0.674          | 0.674       |
|                          |          | 22         | 0.053      | 0.212          | 0.212     | 0.424          | 0.424       |
|                          |          | 20         | 0.0333     | 0.133          | 0.133     | 0.266          | 0.266       |
|                          |          | 18         | 0.0209     | 0.084          | 0.084     | 0.167          | 0.167       |
|                          |          | 16         | 0.0132     | 0.053          | 0.053     | 0.106          | 0.106       |
|                          |          | 14         | 0.00829    | 0.033          | 0.033     | 0.066          | 0.066       |
|                          |          | 12         | 0.00521    | 0.021          | 0.021     | 0.042          | 0.042       |
|                          |          | 10         | 0.00328    | 0.013          | 0.013     | 0.026          | 0.026       |
|                          |          | 8          | 0.00206    | 0.008          | 0.008     | 0.016          | 0.016       |
| Feeder cable             | •        |            |            |                |           |                |             |
| <b>Total FEB current</b> | Distance | Wire gauge | Ohms/meter | $\Delta {f V}$ | Cable Pd  | $\Delta {f V}$ | Cable Pd    |
| 64.00                    | 4        | 12         | 0.00521    | 1.334          | 64.020    | 2.668          | 128.041     |
|                          |          | 10         | 0.00328    | 0.840          | 40.305    | 1.679          | 80.609      |
|                          |          | 8          | 0.00206    | 0.527          | 25.313    | 1.055          | 50.627      |
|                          |          | 6          | 0.0013     | 0.333          | 15.974    | 0.666          | 31.949      |
|                          |          | 4          | 0.000815   | 0.209          | 10.015    | 0.417          | 20.029      |
|                          |          | 2          | 0.000515   | 0.132          | 6.328     | 0.264          | 12.657      |

0.000322

0

0.082

3.957

0.165

7.913

## Power Distribution Boxes

- One Power Distribution Box is located next to each Combiner
- The PDB GND and Combiner GND are connected together on adjoining boxes
- Common PDB/Combiner GND are connected to Utility Mains GND by copper cable or braid.
- Bulk Power Supplies are floated at their source. Thus, the negative terminals will be below ground by the amount of voltage drop in the Vdd\_Return line
- Common GND braids carry no current, hence have no voltage drop
- Diagram shown is for detector top. The sides will have a somewhat different (and longer) cable configuration.

## Power Distribution to Front End Boards

- Individual cable from PDB to each FEB
- DAQ cables do not carry a GND signal. If they wind up being shielded, the shield can be ac coupled at the FEB.
- Assumption: Total FEB current <= 1 Amp (not counting TE Cooler)
- Power cables will vary in length between  $\sim 1 \text{ m} 4 \text{ m}$
- Wire gauge is TBD, however an 18 gauge wire results in worst case 84 mV drop in Vdd and Vdd\_return lines. A 16 gauge cable results in worst case 53 mV.
- Individual FEBs have their own board ground (FEB\_GND) which are connected to Vdd\_return on their own power cables. These local grounds will be above the Utility Mains GND potential by an amount equal to their individual cable drop in their Vdd\_return lines.
- Common mode voltage of all LVDS lines will be shifted by the ground drop voltage.
- Drop in Vdd lines has no effect on LVDS common mode voltages due to local regulators.

## TE Cooler Power

- TE Cooler Power to be run on separate cable.  $V_{TEC}$  &  $V_{TEC}$  Return
- V<sub>TEC\_Return</sub> is not connected to FEB\_GND at the FEBs. This is to insure that TE Cooler return current does not cause unwanted transients on the FEB.
- TE Cooler cable to be sized according to specific TE cooler. Tolerance to line drop, particularly in the return line depends on details of the TE cooler control circuit.

